
Developing With
Apache Avalon

Apache Avalon Project

Berin Loritsch



Developing With Apache Avalon
Apache Avalon Project
by Mr. Berin Loritsch

Copyright ©2001 by Apache Software Foundation. All rights reserved.

Developer's Guide version 1.0 for Avalon Framework published 2001

Revision History:
28 Dec 2001: Revision 1.4
30 Oct 2001: Revision 1.3
19 Oct 2001: Revision 1.2
23 Jul 2001: Revision 1.1
15 Jun 2001: Revision 1.0

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Jakarta", "Apache Avalon", "Avalon Excalibur", "Avalon Framework" and "Apache Software Foundation"
must not be used to endorse or promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. The Apache Software Foundation is independant of Sun Microsystems.





This developer's guide is dedicated to the three people who's vision started the Avalon project:
Federico Barbieri, Stefano Mazzocchi, and Pierpaolo Fumagalli. Their concept for the Avalon project

has stood the test of time.





Introduction and Overview
A brief history of Avalon and overview of the design
principles used to create it.

In the beginning was Apache JServ. Stefano Mazzocchi and others helping develop Apache
JServ realized that several patterns used in that project were generic enough to create a
Server Framework. On Wednesday January 27, 1999 (roughly a month after release 1.0b of
JServ) Stefano put together a proposal to start a project called the Java Apache Server
Framework. It was to be the basis for all Java server code at Apache. The idea was to provide
a framework to put together components and reuse code across a number of projects.

Stefano Mazzocchi, Federico Barbieri, and Pierpaolo Fumagalli created the initial version.
Later in 2000, Berin Loritsch and Peter Donald joined the project. By that time, Pierpaolo
and Stefano had moved on to other projects and Java Apache Server Framework started to
use the name Avalon. Those five developers are the main people responsible for the current
design and concepts used by the framework. The current version is very similar to the version
that was released in June 2000. In fact, the major difference is the reorganization of the
packages, and splitting the project into subprojects. The same design patterns and interfaces
exist today.

What is Avalon?
Avalon is a parent project for five sub-projects: Framework, Excalibur, LogKit, Phoenix, and
Cornerstone. Most people think of the Framework when they hear the name Avalon, but it is
more than that. Avalon began as the Java Apache Server Framework that had the framework,
utilities, components, and a server's kernel implementation all in one project.

Since all the pieces of Avalon are of different maturity levels, and have different release
cycles, we have decided to break Avalon into the smaller projects mentioned above. That
move also enables new developers to understand and learn Avalon in distinct
chunks—something that was almost impossible before.

Developing With Apache Avalon

6



Framework
Avalon Framework is the basis for all the other projects under the Avalon umbrella. It
defines the interfaces, contracts, and default implementations for Avalon. The Framework
has the most work put into it, and consequently is the most mature project.

Excalibur
Avalon Excalibur is a collection of server side Components that you can use in your own
projects. It includes pooling implementations, database connection management, and
Component management implementations among others.

LogKit
Avalon LogKit is a high speed logging toolkit used by Framework, Excalibur, Cornerstone,
and Phoenix. It is modeled on the same principles as the JDK 1.4 Logging package but is
compatible with JDK 1.2+.

Phoenix
Avalon Phoenix is the server kernel that manages the deployment and execution of Services
(implemented as server components called Blocks).

Cornerstone
Avalon Cornerstone is a collection of Blocks or services that you can deploy in the Phoenix
environment. The Blocks include socket management and job scheduling among others.

Scratchpad
Scratchpad is not really an official project, but it is the staging area for Components that are
not ready for inclusion in Excalibur yet. They are of varying quality, and their APIs are not
guaranteed to remain consistent until they are promoted into Excalibur.

Focus for this Overview
We are focusing on Avalon Framework in this overview, but we will cover enough of Avalon
Excalibur and Avalon LogKit to get you started. We will use a hypothetical business server
to demonstrate how to practically use Avalon. It is beyond the scope of this overview to
define a full-blown methodology, or to cover every aspect of all the sub projects.

We decided to focus on Avalon Framework because it is the basis for all of the other
projects. If you can comprehend the framework, you can comprehend any Avalon based
system. You will also become familiar with some of the programming idioms common in
Avalon. Another reason for focusing on the framework and touching on the Avalon

Introduction and Overview

7



N402047) Webster's II New Riverside Dictionary

Excalibur and Avalon LogKit projects is that they are officially released and supported.

What Can Avalon Be Used For?
I have been asked on a couple of occasions to identify what Avalon is good for, and what it is
not good for. Avalon's focus is server side programming and easing the maintainability and
design of server focused projects. Avalon can be described as a framework that includes
implementations of the framework.

While Avalon is focused on server side solutions, many people have found it to be useful for
regular applications. The concepts used in Framework, Excalibur, and LogKit are general
enough to be used for any project. The two projects that are more squarely focused on the
server are Cornerstone and Phoenix.

Framework
1. A supporting or enclosing structure.

2. A basic system or arrangement as of ideas.

(see N402047 below)

The word framework is broad in application. Frameworks that focus on a single industry like
medical systems or communications are called vertical market frameworks. The reason being
that the same framework will not work well in other industries. Frameworks that are generic
enough to be used across multiple industries are known as horizontal market frameworks.
Avalon is a horizontal market framework. You would be able to build vertical market
frameworks using Avalon's Framework.

The most compelling example of a vertical market framework built with Avalon is the
publishing framework Apache Cocoon. Apache Cocoon version 2 is built using Avalon's
Framework, Excalibur, and LogKit projects. It makes use of the interfaces and contracts in
the Framework to reduce the time it takes for a developer to learn how Cocoon works. It also
leverages the data source management and component management code in Excalibur so that
it does not have to reinvent the wheel. Lastly, it uses the LogKit to handle all the logging in
the publishing framework.

Once you understand the principles behind Avalon Framework, you will be able to
comprehend any system built on Avalon. Once you can comprehend the system, you will be
able to catch bugs more quickly that are due to the misuse of the framework.

There is no Magic Formula
It is important to state that trying to use any tool as a magic formula for success is begging
for trouble. Avalon is no exception to this rule. Because Avalon's Framework was designed

Developing With Apache Avalon

8



N40207C) http://www.laputan.org/drc/drc.html

N402095) http://www.research.ibm.com/hyperspace/MDSOC.htm

to work for server solutions, it would not be a good idea to use it for building a Graphical
User Interface (GUI). Java already has a framework for building a GUI called Swing.

While you need to consider if Avalon is right for your project, you can still learn from the
principles and design that went into it. The question you need to ask yourself is, "Where is
this project going to be used?" If the answer is that it will be run in a server environment,
then Avalon is a good choice whether you are creating a Java Servlet, or creating a special
purpose server. If the answer is it will be run on a client's machine with no interaction with a
server, than chances are that Avalon might not be a good fit. Even then, the Component
model is very flexible and can help manage complexity in a large application.

Principles and Patterns
All of Avalon is built with specific design principles. The two most important patterns are
Inversion of Control and Separation of Concerns. Component Oriented Programming,
Aspect Oriented Programming, and Service Oriented Programming also influence Avalon.
Volumes could be written about each of the programming principles, however they are
design mindsets.

Inversion of Control
Inversion of Control (IOC) is the concept that a Component is always externally managed.
This phrase was originally coined by Brian Foote in one of his papers (see N40207C below) .
Everything a Component needs in the way of Contexts, Configurations, and Loggers is given
to the Component. In fact, every stage in the life of a Component is controlled by the code
that created that Component. When you use this pattern, you implement a secure method of
Component interaction in your system.

Warning:
IOC is not equivalent to security! IOC provides a mechanism whereby you can implement a
scalable security model. In order for a system to be truly secured, each Component must be
secure, no Component can modify the contents of objects that are passed to them, and every
interaction has to be with known entities. Security is a major topic, and IOC is a tool in the
programmer's arsenal to achieve that goal.

Separation of Concerns
The idea that you should view your problem space from different concern areas resulted in
the Separation of Concerns (SOC) pattern (see N402095 below) . An example would be
viewing a web server from different viewpoints of the same problem space. A web server
must be secure, stable, manageable, configurable, and comply with the HTTP specifications.
Each of those attributes is a separate concern area. Some of these concerns are related to
other concerns such as security and stability (if a server is not stable it can't be secure).

Introduction and Overview

9



N4020A2) http://www.aspectj.org

N4020DE) Webster's II New Riverside Dictionary

The Separation of Concerns pattern in turn led to Aspect Oriented Programming (AOP) (see
N4020A2 below) . Researchers discovered that many concerns couldn't be addressed at class
or even method granularity. Those concerns are called aspects. Examples of aspects include
managing the lifecycle of objects, logging, handling exceptions and cleaning up resources.
With the absence of a stable AOP implementation, the Avalon team chose to implement
Aspects or concerns by providing small interfaces that a Component implements.

Component Oriented Programming
Component Oriented Programming (COP) is the idea of breaking a system down into
components, or facilities within a system. Each facility has a work interface and contracts
surrounding that interface. This approach allows easy replacement of Component instances
without affecting code in other parts of the systems. The major distinction between Object
Oriented Programming (OOP) and COP is the level of integration. The complexity of a COP
system is more easily managed due to fewer interdependencies among classes, promoting the
level of code reuse.

One of the chief benefits of COP is the ability to modify portions of your project's code
without breaking the entire system. Another benefit is the ability to have multiple
implementations of the Component that you can select at runtime.

Service Oriented Programming
Service Oriented Programming (SOP) is the idea of breaking a system down into services
provided by the system.

Service
1. Work or duties performed for others.

2. A facility offering repair or maintenance.

3. A facility providing the public with a utility.

(see N4020DE below)

Avalon's Phoenix identifies a service as the interface and contracts for a facility that Phoenix
will provide. The implementation of the service is called a Block. It is important to realize
that a server is made up of multiple services. To take the example of a Mail server, there are
the protocol handling services, the authentication and authorization services, the
administration service, and the core mail handling service.

Avalon's Cornerstone provides a number of low-level services that you can leverage for your

Developing With Apache Avalon

10



own systems. The services provided are connection management, socket management,
principal/role management, and scheduling. We touch on services here because it is relevant
to the process of decomposing our hypothetical system down into the different facilities.

Introduction and Overview

11



Developing With Apache Avalon

12



Decomposing a System
Just how do you decide what makes up a Component?
The key is defining the facilities that your solution needs
to operate efficiently.

We will use a hypothetical business server to demonstrate how to identify services
and Components. After we define some services that are used in the system, we will
take one of those services and define the different components needed by the service.
My goal is to pass on some concepts that will help you define your system in
manageable pieces.

System Analysis—Identifying Components
While it is beyond the scope of this presentation to provide a full-blown
methodology, I do want to provide some pointers. We will start with the
implementation oriented definition of Components and Services, and then provide a
practical definition.

Component
A Component is the combination of a work interface, and the implementation of
that interface. Its use provides a looser coupling between objects, allowing the
implementation to change independently of its clients.

13



Service
A Service is a group of one or more Components that provide a complete solution. Examples
of a Service are protocol handlers, job schedulers, and authentication and authorization
services.

While these definitions provide a starting place, they don't give the whole picture. In order to
decompose a system (defined as a group of facilities that comprise a project) into the
necessary parts, I advocate a top-down approach. That way you will avoid being bogged
down in details before you know what the different facilities are.

Determining the Scope of Your Project
You always have to start out with a general idea of what your project is supposed to
accomplish. In the commercial world, the initial statement of work accomplishes this. In the
open source world, this is usually accomplished by an idea or brainstorming session. I can't
stress enough the importance of having a high level view of the project.

Obviously, a large project will be comprised of many different services, and a small project
will only have one or two. If you start to feel a bit overwhelmed, just remind yourself that a
large project is really an umbrella for a bunch of smaller projects. Eventually, you will get to
the point where you will be able to comprehend the big picture.

Statement of Work: Business Server
The Business Server is a hypothetical project. For the purpose of our discussion, its function
is to handle sales orders, automatically bill customers, and manage the inventory control.
Sales orders have to be processed as they come in, using some kind of transaction system.
The server automatically bills the customers 30 days after the sales order is filled. The
inventory is managed by both the server and by the current inventory counted at the factory
or warehouse. The business server will be a distributed system, and each server will
communicate with others via a messaging service.

Finding the Services
We will use the Business Server Project to discover the services. Considering the overly
broad statement of work, we can immediately begin to see some services defined in the
description of the project. The list of services will be split into explicit ones (services that can
immediately be derived from the statement of work) and implicit ones (services that are
discovered due to similar work or as supporting the explicit services). Please note that the
implementing company will develop not all of the services-some will be purchased as
commercial solutions. In those cases, we will probably put a wrapper so that we still have a
specific way of interacting with the commercial product. The implementing company will
build the majority of the services.

Developing With Apache Avalon

14



Explicit Services
We can quickly derive a number of services from the statement of work. Our work is not
done after this initial analysis, because the definition of some services requires the existence
of other services.

Transaction Processing Service
The statement of work specifies that "Sales orders have to be processed as they come in".
This means we need to have a mechanism of receiving sales requests and automatically
process them. This is similar to the way web servers work. They receive a request for a
resource, process it, and return a result (e.g. the HTML page). This is known as Transaction
Processing.

To be fair, there are different types of transactions. The generic transaction service will most
likely have to be broken down into something more specific like a "Sales Order Processor".
The approach has to do with how generic you make your service. There is a balance between
usability and reusability. The more generic a service is, the more reusable it is. Usually it is
also more difficult to comprehend.

Scheduling Service
There are a couple of instances where an event must be scheduled for a specified amount of
time after a transaction. In addition, the inventory control processes need to kick off supply
orders on a periodic basis. Because the statement of work states "server automatically bills
the customers 30 days after the sales order is filled" we need a scheduling service. The good
news is that Avalon Cornerstone provides one for us so we don't have to create our own.

Messaging Service
The statement of work specifies that "each server will communicate via a messaging service"
in our distributed system. Let's face it, sometimes customers want a specific product or
method they want to use. The messaging service is a prime example of using another
company's product. Most likely, we would use Java Messaging Service (JMS) to interface
with the Messaging Service. Since JMS is a standard, it is unlikely that the interface will
change any time soon.

In practical experience, a well-designed message oriented system will scale better than object
oriented systems (like EJB). One reason for better scalability is that messaging tends to have
lower concurrent overhead memory. Another reason for this is that it is easier to spread the
load of message processing across all servers instead of concentrating all the processing in a
small cluster of servers (or even just one server).

Inventory Control Service
While this is not a classic server piece in textbooks, it is a requirement of this system. The

Decomposing a System

15



inventory control service routinely monitors the records for what the factory or warehouse
has in stock, and triggers events when stock starts running out.

Implied Services
Using experience with past systems, and further breaking down other services will yield a
number of services that the system needs that wasn't specified. Due to space limitations, we
will avoid doing a full decomposition.

Authentication and Authorization Service
The authentication and authorization service is not necessarily specified in the statement of
work—but all business systems must take security seriously. That means all clients of the
system must be authenticated, and every action of the user must be authorized.

Workflow Automation Service
Workflow automation is a hot development area in enterprise systems. If you don't use a
third party workflow management server, you will have to invent your own. Workflow
automation is generally the act of using a software system to route tasks through a
Company's business process. For more information, view the Workflow Management
Council's web page at http://www.wfmc.org.

Document Repository Service
This definition of a "document repository" is very loosely defined as the current state of
information in a task. In other words, when the company receives a purchase order, our
system needs to store and recall the purchase order information. The same goes for billing
and any other process in the system from inventory to new customer requests.

Summary
I hope that the examples of services for the Business Server project will help you discover
more. You will find that as you go from higher levels of abstraction down to lower levels,
you will find more types of services required like Connection Management to handle
requests on open ports. Some of the services we defined will be implemented by third party
systems such as the Messaging Service and the Workflow Management Service. It is in your
best interest to use a standard interface for these services so that you can change vendors
later. Some services are actually multiple services acting as one larger service. Some are
already available within Avalon Excalibur or Avalon Cornerstone.

One thing to keep in mind while discovering the services in a system is that a service should
be a high level sub-system. This will help you define components using teams of analysts.
Because we have already identified the main services, you can have more than one person (or
team) decompose each of the services in parallel. The boundaries are well defined, so there is
little chance for overlap. If you decide to do the parallel analysis, you should come back

Developing With Apache Avalon

16

http://www.wfmc.org


together to identify common Components so that you can reuse as much code as possible.

UML Diagram for the Business Server

• Berin Loritsch, 2001

Finding Components
We will use the Document Repository Service mentioned already for the process of
identifying the proper Components. For the sake of our conversation, we will now state the
requirements of the Document Repository Service. The repository will use a database for
persistent storage, identify and authorize clients, and cache documents in memory.

Practical Definition of Components
When we talk about components, you have to think in terms of "What facilities does my
service need to operate?" Avalon was conceived with the concept of casting your system.
The developer of the system would come up with a list of responsibilities for the Component
known as its role.

Decomposing a System

17



What is a Role?
The concept of roles comes from the theater. A play, musical, or movie will have a certain
number of roles that actors play. Although there never seems to be a shortage of actors, there
are a finite number of roles. Its script defines the function or action of a role. Just like the
theatrical version, the script determines how you interact with the Component. Think of the
different roles in your system, and you will have your cast of Components so to speak.

A role is the contract for a type of component. For example, our Document Repository
Service needs to interact with a database. Avalon Excalibur defines a Component that
satisfies the role "Data Source". Excalibur includes two different Components that satisfy
that role, depending on the setting our Service will be living in; however, they both satisfy
the same contracts. The majority of Avalon based systems will only use one active
Component for each role. The script is the work interface: the interface with which other
components interact.

There are specific contracts that you must define and keep in mind when you specify
interfaces for your Components. The contracts specify what users of the Component must
provide, and what the Component produces. Sometimes you must include usage semantics in
the contract. An example is the difference between a temporary storage Component and a
permanent storage Component. When the interface and contract are defined, you can work on
your implementation.

What is a good candidate for a Component?
We have already identified four possibilities for Components within our Document
Repository Service: DataSourceComponent (from Excalibur), Cache, Repository, and
Guardian. You should look for roles with a high likelihood of multiple implementations that
need to inter-operate seamlessly.

Using that example, you will discover several instances where you need replaceable
facilities. Most of the time, you will only be using one implementation of the facility, but you
need the ability to upgrade it independently of the rest of the system. Other times, you will
need alternate implementations due to environmental issues. For example, the "Data Source"
that Excalibur defined will usually handle all the JDBC Connection pooling itself-but
sometimes you want to take advantage of that facility built into a Java 2 Enterprise Edition
(J2EE) server. Excalibur solves this by having a "Data Source" that directly pools and
manages the JDBC connections, and one that uses Java's Naming and Directory Interface
(JNDI) to get the specified connection.

What is not a good Component?
People who are used to JavaBeans tend to implement everything as a JavaBean. This means
everything from data modeling to transaction processing. If you used this approach with
Components, you might end up with an overly complex system. Think of Components as

Developing With Apache Avalon

18



modeling a service or facility, and not data. You could have a Component that pulls data
from another resource, but the data should remain distinct as data. An example of this
philosophy in Avalon Excalibur is the fact that the Connection is not a Component.

Another example could be the Guardian Component we specified earlier. It could be argued
that the logic involved in the Guardian is so specific to the Document Repository Service that
it could not be used again for a completely different service. While there are ways of
managing the complexity, and ways of making it flexible-sometimes the extra work is not
worth it. You have to weigh your decisions in such cases carefully. If the logic performed in
a potential Component is going to be applied consistently then it might make sense to keep it
a Component. There is room to have multiple instances of a Component in a system, and they
would be selected at run time. If the logic for a potential Component is specific to only one
other Component, it might be worth it to absorb the logic into the other Component. Using
the example of the Guardian Component and the Repository Component, we could argue that
our Guardian is so specific to the Repository, that it is not implemented as a Component.

Decomposing the Document Repository Service
We will list the Components that we are going to implement with a description of their roles,
the rationale, and their origination (if the component already exists).

DocumentRepository
The DocumentRepository is the parent Component of the whole service. In Avalon, services
are implemented as Blocks, which are a specific kind of Component. The Block must have a
work interface that extends the Service marker interface. The Block interface also extends
Avalon's Component interface. Please note that Block and Service are interfaces that are part
of Avalon Phoenix. In the end, a Service is still technically just a specific type of
Component.

The DocumentRepository is our method of getting Document objects from persistent storage.
It interacts with the other Components in the service to provide security, functionality, and
speed. This particular DocumentRepository will connect to a database and employ the logic
to build the Document objects internally.

DataSourceComponent
The DataSourceComponent is supplied by Avalon Excalibur. It is our method of retrieving
valid JDBC Connection objects for our use.

Cache
The Cache is a short-term memory-based storage facility. The DocumentRepository will use
it to store Document objects referenced by a hash algorithm. In order to promote the
reusability of the Cache Component, the stored object must implement a Cacheable interface.

Decomposing a System

19



Guardian
The Guardian Component is used to manage permissions based on the Principal. The
Guardian will load its permission sets from a database. The Guardian will use the standard
Java security model to enforce access to the specific Document objects.

Summary
At this point, you should have an idea of what makes a good Component. The examples
describe all the Components that will be in the Document Repository Service, with a brief
summary of what they will do. A quick glance through the list supports the approach of only
implementing facilities as Components—not data. At this point, you should be able to
determine what components your services need to operate.

Developing With Apache Avalon

20



Framework and Foundations
We will describe Avalon's contracts and interfaces so we
have a foundation to actually build our Components.

Avalon Framework is the central piece to the entire Avalon project. If you understand
the contracts and constructs defined in the framework, you can understand anything
that uses it. Remember the principles and patterns we have already discussed so far.
In this section, we will expound on how the Role concept works practically, the
lifecycle of Components, and how the interfaces work.

Defining the Component's Role
In Avalon, all Components have a role. The reason is that you retrieve your
Components by role. At this stage, the only concern area we are using is the signature
of the role. If you recall in the second section, we defined a Component as "the
combination of a work interface and the implementation of the interface". That work
interface is your role.

Creating the Role's Interface
Below you will find an example interface, followed by some best practices along with
their reasoning.

package org.apache.bizserver.docs;

21



public interface DocumentRepository extends Component
{

String ROLE = "org.apache.bizserver.docs.DocumentRepository";

Document getDocument(Principal requestor, int refId);
}

Best Practices
• Include a String called "ROLE" that has the role's official name. That name is the same

as the fully qualified name for the work interface. This helps later on when we need to
get an instance of the Component later.

• Do extend the Component interface if possible. This makes it easier on you when it is
time to release your Component. If you are not in control of the work interface, then
you do not have this option. It is not the end of the world, as you can recast the instance
to Component when it is time to release it.

• Do one thing and do it well. A Component should have the simplest interface possible,
When your work interface extends several other interfaces, you muddy the contract for
this Component. An old American acronym helps define this pattern: Keep It Simple,
Stupid (KISS). It's not hard to outsmart yourself—I've done it a number of times
myself.

• Only specify the methods you need. The client should have no knowledge of
implementation details, and too many alternative methods only introduce unneeded
complexity. In other words pick an approach and stick with it.

• Don't let your Role's interface extend any lifecycle or lifestyle interfaces. By
implementing any of those classes of interfaces, you are tying an implementation to the
specification. This is a bad pattern and this will only lead to debugging and
implementation problems later.

Choosing the Role's Name
In Avalon, every Role has a name. It is how you get references to other Components in the
system. The Avalon team has outlined some idioms to follow for the naming of your role.

Naming Idioms
• The fully qualified name of the work interface is usually the role name. The exceptions

are listed after this general rule. Using this example, our theoretical Component's name
would be "org.apache.bizserver.docs.DocumentRepository". This is the name that
would be included in your interface's "ROLE" property.

• If we obtain the reference to this Component through a Component Selector, we usually
take the role name derived from the first rule and append the word "Selector" to the end.

Developing With Apache Avalon

22



The result of this naming rule would be
"org.apache.bizserver.docs.DocumentRepositorySelector". You can use the shorthand
DocumentRepository.ROLE + "Selector".

• If we have multiple Components that implement the same work interface, but are used
for different purposes, we have separate roles. A Role is the Component's purpose in the
system. Each role name will start with the original role name, but the purpose name of
the role will be appended with a /${purpose}. By example we could have the
following purposes for our DocumentRepository: PurchaseOrder and Bill. Our two
roles would be expressed as DocumentRepository.ROLE +
"/PurchaseOrder" and DocuementRepository.ROLE + "/Bill",
respectively.

Overview of Framework Interfaces
The entire Avalon Framework can be divided into seven main categories (as is the API):
Activity, Component, Configuration, Context, Logger, Parameters, Thread, and Miscellany.
Each of those categories (except Miscellany) represents a unique concern area. It is common
for a Component to implement several interfaces to identify all the concern areas that the
Component is worried about. This will allow the Component's container to manage each
Component in a consistent manner.

Lifecycle for Avalon Interfaces
When a framework implements several interfaces to separate the concerns of the Component,
there is potential for confusion over the order of method calls. Avalon Framework realizes
this, and so we developed the contract for lifecycle ordering of events. If your Component
does not implement the associated Interface, then simply skip to the next event that will be
called. Because there is a correct way to create and prepare Components, you can set up your
Components as you receive events.

The Lifecycle of a Component is split into three phases: Initialization, Active Service, and
Destruction. Because these phases are sequential, we will discuss the events in order. In
addition, the act of Construction and Finalization is implicit due to the Java language, so they
will be skipped. The steps will list the method name, and the required interface. Within each
phase, there will be a number of stages identified by method names. Those stages are
executed if your Component extends the associated interface specified in parenthesis.

Initialization
This list of stages occurs in this specific order, and occurs only once during the life of the
Component.

1. enableLogging() [LogEnabled]

2. contextualize() [Contextualizable]

Framework and Foundations

23



3. compose() [Composable]

4. configure() [Configurable]

5. parameterize() [Parameterizable]

6. initialize() [Initializable]

7. start() [Startable]

Active Service
This list of stages occurs in this specific order, but may occur multiple times during the life
of the Component. Please note that should you choose to not implement the Suspendable
interface, it is up to your Component to ensure proper functionality while executing any of
the Re* stages.

1. suspend() [Suspendable]

2. recontextualize() [Recontextualizable]

3. recompose() [Recomposable]

4. reconfigure() [Reconfigurable]

5. resume() [Suspendable]

Destruction
This list of stages occurs in the order specified, and occurs only once during the life of the
Component.

1. stop() [Startable]

2. dispose() [Disposable]

Avalon Framework Contracts
In this section, we will cover all the sections alphabetically with the exception of the most
important concern area: Component.

When I use the word "container" or "contains" when describing Components, I have a very
specific meaning. I am referring to child Components that the parent Component has
instantiated and controls. I am not referring to Components obtained through a
ComponentManager or ComponentSelector. Furthermore, some Avalon stages received by a
container must be propagated to all of its children implementing the appropriate interface.
The specific interfaces in question are Initializable, Startable, Suspendable, and Disposable.
The reasoning for this contract is that these particular interfaces have specific execution
contracts.

Developing With Apache Avalon

24



Component
This is the core of Avalon Framework. Any interface defined in this concern area will throw
ComponentException.

Component
Every Avalon Component must implement the Component interface. The Component
Manager and Component Selector only handle Components. There are no methods associated
with this interface. It is only used as a marker interface.

Any Component must use default no parameter constructors. All configurations are done
with the Configurable or Parameterizable interfaces.

Composable
A Component that uses other Components needs to implement this interface. The interface
has only one method compose() with a ComponentManager passed in as the only
parameter.

The contract surrounding this interface is that the compose() is called once and only once
during the lifetime of this Component.

This interface along with any other interface that has methods specified uses the Inversion of
Control pattern. It is called by the Component's container, and only the Components that this
Component needs should be present in the ComponentManager.

Recomposable
On rare occasions, a Component will need a new ComponentManager with new
Component role mappings. For those occasions, implement the recomposable interface. It has
a separate method from Composable called recompose().

The contract surrounding the interface states that the recompose() method can be called
any number of times, but never before the Component is fully initialized. When this method
is called, the Component must update itself in a safe and consistent manner. Usually this
means all processing that the Component is performing must stop before the update and
resume after the update.

Activity
This group of interfaces refers to contracts for the life cycle of the Component. If there is an
error during any method call with this group of interfaces, then you can throw a generic
Exception.

Disposable
The Disposable interface is used by any Component that wants a structured way of

Framework and Foundations

25



knowing it is no longer needed. Once a Component is disposed of, it can no longer be used.
In fact, it should be awaiting garbage collection. The interface only has one method
dispose() that has no parameters.

The contract surrounding this interface is that the dispose() method is called once and the
method is the last one called during the life of the Component. Further implications include
that the Component will no longer be used, and all resources held by this Component must be
released.

Initializable
The Initializable interface is used by any Component that needs to create Components
or perform initializations that take information from other initialization steps. The interface
only has one method initialize() that has no parameters.

The contract surrounding this interface is that the initialize() method is called once
and the method is the last one called during the initialization sequence. Further implications
include that the Component is now live, and it can be used by other Components in the
system.

Startable
The Startable interface is used by any Component that is constantly running for the
duration of its life. The interface defines two methods: start() and stop(). Neither
method has any parameters.

The contract surrounding this interface is that the start() method is called once after the
Component is fully initialized, and the stop() method is called once before the Component
is disposed of. Neither method will be called more than once, and start() will always be
called before stop(). Implications of using this interface require that the start() and
stop() methods be conducted safely (unlike the Thread.stop() method) and not
render the system unstable.

Suspendable
The Suspendable interface is used by any Component that is running for the duration of
its life that permits itself to be suspended. While it is most commonly used in conjunction
with the Startable interface, it is not required to do so. The interface defines two
methods: suspend() and resume(). Neither method has any parameters.

The contract surrounding this interface is that suspend() and resume() may be called
any number of times, but never before the Component is initialized and started or after the
Component is stopped and disposed. Calls to suspend() when the system is already
suspended should have no effect as well as calls to resume() when the system is already
running.

Developing With Apache Avalon

26



Configuration
This group of interfaces describes the concern area of configuration. If there are any
problems like required Configuration elements that are missing, then you may throw a
ConfigurationException.

Configurable
Components that modify their exact behavior based on configurations must implement this
interface to obtain an instance of the Configuration object. There is one method
associated with this interface: configure() with a Configuration object as the only
parameter.

The contract surrounding this interface is that the configure() method is called once
during the life of the Component. The Configuration object passed in must not be null.

Configuration
The Configuration object is a representation of a tree of configuration elements that
have attributes. In a way, you can view the configuration object as an overly simplified
DOM. There are too many methods to cover in this document, so please review the
JavaDocs. You can get the Configuration object's value as a String, int, long,
float, or boolean—all with default values. You can do the same for attribute values.
You may also get child Configuration objects.

There is a contract that says that if a Configuration object has a value that it should not
have any children, and the corollary is also true—if there are any children, there should be no
value.

You will notice that you may not get parent Configuration objects. This is by design. To
reduce the complexity of the Configuration system, containers will most likely pass
child configuration objects to child Components. The child Components should not have any
access to parent configuration values. This approach might provide a little inconvenience, but
the Avalon team opted for security by design in every instance where there was a tradeoff.

Reconfigurable
Components that implement this interface behave very similar to Recomposable
Components. It's only method is named reconfigure(). This design decision is used to
minimize the learning curve of the Re* interfaces. Reconfigurable is to
Configurable as Recomposable is to Composable.

Context
The concept of the Context in Avalon arose from the need to provide a mechanism to pass
simple objects from a container to a Component. The exact protocol and binding names are
purposely left undefined to provide the greatest flexibility to developers. The contracts

Framework and Foundations

27



surrounding the use of the Context object are left for you to define in your system,
however the mechanism is the same.

Context
The Context interface defines only the method get(). It has an Object for a parameter,
and it returns an object based on that key. The Context is populated by the container, and
passed to the child Component who only has access to read the Context.

There is no set contract with the Context other than it should always be read-only by the
child Component. If you extend Avalon's Context, please respect that contract. It is part of
the Inversion of Control pattern as well as security by design. In addition, it is a bad idea to
pass a reference to the container in the Context for the same reason that the Context should
be read-only .

Contextualizable
A Component that wishes to receive the container's Context will implement this interface.
It has one method named contextualize() with the parameter being the container's
Context object.

The contract surrounding this interface is that the contextualize() method is called
once during the life of a Component, after LogEnabled but before any other initialization
method.

Recontextualizable
Components that implement this interface behave very similar to Recomposable
Components. It's only method is named recontextualize(). This design decision is
used to minimize the learning curve of the Re* interfaces. Recontextualizable is to
Contextualizable as Recomposable is to Composable.

Resolvable
The Resolvable interface is used to mark objects that need to be resolved in some particular
context. An example might be an object that is shared by multiple Context objects, and
modifies its behavior based on a particular Context. The resolve() method is called by
the Context before the object is returned.

Logger
Every system needs the ability to log events. Avalon uses its LogKit project internally. While
LogKit does have ways of accessing a Logger instance statically, the Framework wishes to
use the Inversion of Control pattern.

LogEnabled
Every Component that needs a Logger instance implements this interface. The interface has

Developing With Apache Avalon

28



one method named enableLogging() and passes Avalon Framework's Logger instance
to the Component.

The contract surrounding this method is that it is called only once during the Component's
lifecycle before any other initialization step.

Logger
The Logger interface is used to abstract away the differences in logging libraries. It
provides only a client API. Avalon Framework provides three wrapper classes that
implement this interface: LogKitLogger for LogKit, Log4jLogger for Log4J, and
Jdk14Logger for JDK 1.4 logging.

Parameters
Avalon realizes that the Configuration object hierarchy can be heavy in many circumstances.
Therefore, we came up with a Parameters object that captures the convenience of
Configuration objects with a simple name and value pair.

Parameterizable
Any Component that wants to use Parameters instead of Configuration objects will
implement this interface. Parameterizable has one method named parameterize()
with the parameter being the Parameters object.

The contract is that this is called once during the lifecycle of the Component. Usually this
interface is used in lieu of the Configurable interface, however if both are used, the
parameterize() method is called after the configure() method.

Parameters
The Parameters object provides a mechanism to obtain a value based on a String
name. There are convenience methods that allow you to use defaults if the value does not
exist, as well as obtain the value in any of the same formats that are in the Configurable
interface.

While there are similarities between the Parameters object and the
java.util.Property object, there are some important semantic differences. First,
Parameters are read-only . Second, Parameters are easily derived from
Configuration objects. Lastly, the Parameters object is derived from XML
fragments that look like this:

<parameter name="param-name" value="param-value"/>

Framework and Foundations

29



Thread
The thread marker interfaces are used to signal to the container essential semantic
information regarding the Component use. They mark a component implementation in
regards to thread safety. It is a best practice to delay implementing these interfaces until the
final Component implementation class. This avoids complications when an implementation
is marked ThreadSafe, but a component that extends that implementation is not. The
interfaces defined in this package comprise part of what I call the LifeStyle interfaces. There
is one more LifeStyle interface that is part of the Excalibur package—so it is an extension to
this core set—Poolable that is defined in Excalibur's pool implementations.

SingleThreaded
The contract with SingleThreaded Components is that the interface or the
implementation precludes this Component being accessed by several threads simultaneously.
Each thread needs its own instance of the Component. Alternatively, you may use
Component pooling instead of creating a new instance for every request for the Component.
In order to use pooling, you will need to implement Avalon Excalibur's Poolable interface
instead of this one.

ThreadSafe
The contract with ThreadSafe Components is that both their interface and their
implementation function correctly no matter how many threads access the Component
simultaneously. While this is generally a lofty design goal, sometimes it is simply not
possible due to the technologies you are using. A Component that implements this interface
will generally only have one instance available in the system, and other Components will use
that one instance.

Miscellany
The classes and interfaces in the root package for Avalon Framework incorporates Cascading
Exceptions, and a couple of generic utilities. However, one class deserves mention beyond
the others.

Version
Java™ versioning techniques are entries in the manifest file in a jar. The problem is, when
the jar is unpacked you lose the versioning information, and the versioning is in an easily
modified text file. When you couple this with a higher learning curve, detecting Component
or Interface versions is difficult.

The Avalon team came up with the Version object to allow you to have easily determined
versions, and to compare versions. You may implement the Version object in your
Components and your tests for the proper Component or minimum version level will be
much easier.

Developing With Apache Avalon

30



Implementing the Dream
We will show how you can use Avalon Framework and
Avalon Excalibur to realize your services. We will show
just how easy Avalon is to use.

After your analysis is complete, you need to create the Components and Services that
make up your system. Avalon would be of little use if it only described some idioms
for you to use. Even then, the use of those idioms and patterns would still help in
understanding the overall system. Avalon Excalibur provides some useful
Components and utilities that you can incorporate into your own system that will
make your life much easier. For our demonstration, we will go through the process of
defining a Component that retrieves a document instance from a repository. If you
recall our discussion about the theoretical Business Server, we identified this
Component as a Service. In practical situations, a Service is a Component that has a
larger scope.

Implementing the Component
At this point, we define how to implement our Component. We will go through the
process of implementing the DocumentRepository Component previously mentioned.
The first things we need to figure out are the concern areas for our Component. Then
we have to figure out how our Component will be created and managed.

Choosing the Concern Areas

31



We have already defined the Role and the Interface for our DocumentRepository Component
in the last chapter, we are ready to create the implementation. Because the interface for the
DocumentRepository only defines one method, we have an opportunity to create a
thread-safe Component. This is the most desired type of component because it allows for the
least amount of resource utilization. In order for our implementation to be thread-safe, we do
need to be careful about how we implement the Component. Since all of our documents are
stored in a database, and we desire to use an external Guardian Component, we will need
access to other Components. As responsible developers, we will want to log messages that
will help us debug our component, and track down what is going on internally. The beauty of
the Avalon Framework is that you only implement the interfaces you need, and ignore the
ones you don't. This is where Separation of Concerns pays off. As you find you need a new
concern area addressed, you merely implement the associated interface, and incorporate the
new functionality. To the client of your Component, there is no difference.

Since it is a design goal to be thread-safe, we already know that we need to implement the
ThreadSafe interface. The DocumentRepository interface only has one method, so the use of
the Component's work interface is compatible with that requirement. Furthermore, we know
that a Component will not be used before it is fully initialized, nor will it be used once it is
destroyed.

There are a couple of implicit interfaces that we need to implement to accomplish the design.
We want our solution to be as secure as possible and explicitly track whether the Component
is fully initialized or not. To accomplish this goal, we will implement the Initializable and
Disposable interfaces. Since specific information about our environment may change, or may
need to be customized, we need to make our DocumentRepository Configurable. Our
Component makes use of other Components, and the method that Avalon provides to get
instances of the required Component is by using a ComponentManager. We will need to
implement the Composable interface to get an instance of the ComponentManager.

Because the DocumentRepository accesses the documents in the database, we need to make a
decision. Do we want to take advantage of the Avalon Excalibur DataSourceComponent, or
do we want to implement our own Connection management code. For the sake of this paper,
we will use the DataSourceComponent.

At this point, our skeleton class looks like this:

public class DatabaseDocumentRepository
extends AbstractLogEnabled
implements DocumentRepository , Configurable, Composable, Initializable,

Disposable, Component, ThreadSafe
{

private boolean initialized = false;
private boolean disposed = false;
private ComponentManager manager = null;
private String dbResource = null;

Developing With Apache Avalon

32



/**
* Constructor. All Components need a public no argument constructor
* to be a legal Component.
*/
public DatabaseDocumentRepository() {}

/**
* Configuration. Notice that I check to see if the Component has
* already been configured? This is done to enforce the policy of
* only calling Configure once.
*/
public final void configure(Configuration conf)

throws ConfigurationException
{

if (initialized || disposed)
{

throw new IllegalStateException ("Illegal call");
}

if (null == this.dbResource)
{

this.dbResource = conf.getChild("dbpool").getValue();
getLogger().debug("Using database pool: " + this.dbResource);
// Notice the getLogger()? This is from AbstractLogEnabled
// which I extend for just about all my components.

}
}

/**
* Composition. Notice that I check to see if the Component has
* already been initialized or disposed? This is done to enforce
* the policy of proper lifecycle management.
*/
public final void compose(ComponentManager cmanager)

throws ComponentException
{

if (initialized || disposed)
{

throw new IllegalStateException ("Illegal call");
}

if (null == this.manager)
{

this.manager = cmanager;
}

}

public final void initialize()
throws Exception

{
if (null == this.manager)
{

throw new IllegalStateException("Not Composed");
}

if (null == this.dbResource)
{

throw new IllegalStateException("Not Configured");

Implementing the Dream

33



}

if (disposed)
{

throw new IllegalStateException("Already disposed");
}

this.initialized = true;
}

public final void dispose()
{

this.disposed = true;
this.manager = null;
this.dbResource = null;

}

public final Document getDocument(Principal requestor, int refId)
{

if (!initialized || disposed)
{

throw new IllegalStateException("Illegal call");
}

// TODO: FILL IN LOGIC
}

}

You will notice some constructs in the above code. When you are designing with security in
mind, you should explicitly enforce every contract on your Component. Security is only as
strong as the weakest link. You should only use a Component when you are certain it is fully
initialized, and never use it when it is disposed of. I placed the logic that you would need in
this skeleton class because that way you can adopt the same practices in classes that you
write.

Instantiating and Managing Components
In order for you to understand how the Container/Component relationship works, we will
first discuss the manual method of managing Components. Next, we will discuss how
Avalon's Excalibur Component infrastructure hides the complexity from you. You will still
find times when you would rather manage components yourself. Most of the time the power
and flexibility of Excalibur is just what you need.

The Manual Method
All of Avalon's Components are created somewhere. The code that creates the Component is
that Component's Container. The Container is responsible for managing the Component's
lifecycle from construction through destruction. A Container can be the static "main" method
called from a command line, or it can be another Component. Remember the Inversion of
Control pattern when you design your Containers. Information and method calls should only

Developing With Apache Avalon

34



flow from the Container to the Component.

Warning: Subversion of Control
Subversion of Control is the anti-pattern to Inversion of Control. Subversion of control is
done when you pass a reference to a Component's Container to the Component. It is also
done when you have a Component manage it's own lifecycle. Code that operates in this
manner should be considered defective. The interactions that happen when you confuse the
Container/Component relationship make the system harder to debug and security harder to
audit.

In order to manage the child Components, you need to keep a reference to them for their
entire lifetime. Before the Container or any other Component can use the child Component, it
must go through the initialization phase of its lifecycle. For our DocumentRepository, the
code will look something like the following:

class ContainerComponent implements Component, Initializable, Disposable
{

DocumentRepository docs = new DatabaseDocumentRepository();
GuardianComponent guard = new DocumentGuardianComponent();
DefaultComponentManager manager = new DefaultComponentManager();

public void initialize()
throws Exception

{
Logger docLogger = new LogKitLogger( Hierarchy.defaultHierarchy()

.getLoggerFor( "document" ) );

this.docs.enableLogging( docLogger.childLogger( "repository" ) );
this.guard.enableLogging( docLogger.childLogger( "security" ) );

DefaultConfiguration pool = new DefaultConfiguration("dbpool");
pool.setValue("main-pool");
DefaultConfiguration conf = new DefaultConfiguration("");
conf.addChild(pool);

this.manager.addComponent( DocumentRepository.ROLE, this.docs );
this.manager.addComponent( GuardianComponent.ROLE, this.guard );
this.docs.compose( this.manager );
this.guard.compose( this.manager );

this.docs.configure(conf);

this.guard.initialize();
this.docs.initialize();

}

public void dispose()
{

this.docs.dispose();
this.guard.dispose();

}
}

Implementing the Dream

35



For the sake of brevity, I removed all the explicit checking from the above code. You can see
that manually creating and managing Components is very detailed. If you forget to do one
step in the life of a Component, you will see bugs. This also requires intimate knowledge of
the Components you are instantiating. An alternate approach would be to add a couple
methods to the above ContainerComponent that handles the initialization of the
components dynamically.

Automated Autonomy
Developer's are naturally lazy, so they would spend the time to write a specialized
ComponentManager that became the Container for all of their Components in the system.
That way they would not have to be bothered with intimately knowing the interfaces of all
the Components in a system. That can be a daunting task. The Avalon developers have
created just such a beast. Avalon Excalibur's Component architecture includes a
ComponentManager that is controlled by configuration files written in XML.

There is a tradeoff when you relinquish the responsibility of managing a Component to
Excalibur's ComponentManager. You relinquish the fine control over what Components are
included in the ComponentManager. However, if you have a large system, you will find that
manual control is a daunting task. In that case, it is better for the stability of the system for
one entity to centrally manage all the Components in a system.

Since there are varying levels of integration you want to achieve with Excalibur's Component
Architecture, we will start with the lowest level. Excalibur has a group of ComponentHandler
objects that act as individual Containers for one type of Component. They manage the
complete life of your Component. Let me introduce the concept of lifestyle interfaces. A
lifestyle interface describes how the system treats a Component. Since the lifestyle of a
component has impact on the running of a system, we need to discuss the implications of the
current lifestyle interfaces:

• org.apache.avalon.framework.thread.SingleThreaded

• Not thread-safe or reusable.

• When no lifestyle interface is supplied, this is assumed.

• A brand new instance is created every time the Component is requested.

• Creation and initialization is delayed until you request the Component.

• org.apache.avalon.framework.thread.Threadsafe

• Component is fully reentrant, and complies with all principles of thread safety.

• One instance is created and shared with all Composables that request it.

• Creation and initialization is done when ComponentHandler is created.

Developing With Apache Avalon

36



• org.apache.avalon.excalibur.pool.Poolable

• Not thread-safe, but is fully reusable.

• A pool of instances is created and the free instances are returned to Composables
that request it.

• Creation and initialization is done when ComponentHandler is created.

The ComponentHandler interface is very simple to deal with. You initialize the Constructor
with the Java class, the Configuration object, the ComponentManager, a Context object, and
a RoleManager. If you know that your Component will not need any of the aforementioned
items, you can pass a null in its place. After that, when you need a reference to the
Component, you call the "get" method. After you are done with it, you call the "put" method
and pass the Component back to the ComponentHandler. The following code will make it
easier to understand.

class ContainerComponent implements Component, Initializable, Disposable
{

ComponentHandler docs = null;
ComponentHandler guard = null;
DefaultComponentManager manager = new DefaultComponentManager();

public void initialize()
throws Exception

{
DefaultConfiguration pool = new DefaultConfiguration("dbpool");
pool.setValue("main-pool");
DefaultConfiguration conf = new DefaultConfiguration("");
conf.addChild(pool);
this.docs.configure(conf);

this.docs = ComponentHandler.getComponentHandler(
DatabaseDocumentRepository.class,
conf, this.manager, null, null);

this.guard = ComponentHandler.getComponentHandler(
DocumentGuardianComponent.class,
null, this.manager, null, null);

Logger docLogger = new LogKitLogger( Hierarchy.defaultHierarchy()
.getLoggerFor( "document" ) );

this.docs.enableLogging( docLogger.childLogger( "repository" ) );
this.guard.enableLogging( docLogger.childLogger( "security" ) );

this.manager.addComponent(DocumentRepository.ROLE, this.docs);
this.manager.addComponent(GuardianComponent.ROLE, this.guard);

this.guard.initialize();
this.docs.initialize();

}

public void dispose()

Implementing the Dream

37



{
this.docs.dispose();
this.guard.dispose();

}
}

At this point, we only saved ourselves a few lines of code. We still manually created our
Configuration object, we still had to set the Logger, and we still had to initialize and dispose
of the ComponentHandler objects. What we did at this point is simply protect ourselves from
changing interfaces. You may find it better for your code to use this approach. Excalibur
went further though. Most complex systems have configuration files, and they allow an
administrator to alter vital Configuration information. Excalibur can read a configuration file
in the following format, and build the Components in a system from it.

<my-system>
<component

role="org.apache.avalon.excalibur.datasource.DataSourceComponentSelector"
class="org.apache.avalon.excalibur.component.ExcaliburComponentSelector">

<component-instance name="documents"
class="org.apache.avalon.excalibur.datasource.JdbcDataSource">
<pool-controller min="5" max="10"/>
<auto-commit>false</auto-commit>
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql:localhost/mydb</dburl>
<user>test</user>
<password>test</password>

</component-instance>
<component-instance name="security"
class="org.apache.avalon.excalibur.datasource.JdbcDataSource">
<pool-controller min="5" max="10"/>
<auto-commit>false</auto-commit>
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql:localhost/myotherdb</dburl>
<user>test</user>
<password>test</password>

</component-instance>
</component>
<component
role="org.apache.bizserver.docs.DocumentRepository"
class="org.apache.bizserver.docs.DatabaseDocumentRepository">
<dbpool>documents</dbpool>

</component>
<component
role="org.apache.bizserver.docs.GuardianComponent"
class="org.apache.bizserver.docs.DocumentGuardianComponent">
<dbpool>security</dbpool>
<policy file="/home/system/document.policy"/>

</component>
</my-system>

The root element can be anything you want. You will notice that we now have several

Developing With Apache Avalon

38



Components defined. We have our familiar DocumentRepository class and
GuardianComponent class, as well as a couple of Excalibur DataSourceComponent classes.
In addition, now we have some specific configuration information for our Guardian
Component. In order to read that information into your system, Avalon Framework provides
some conveniences for you:

DefaultConfigurationBuilder builder = new DefaultConfigurationBuilder();
Configuration systemConf = builder.buildFromFile("/path/to/file.xconf");

This does simplify all the code we had for hand-building the Configuration element earlier,
and it limits the amount of information we need to explicitly know right away. We will take
one last look at our Container class and see if we really have some savings. Keep in mind
that we have five components specified (a ComponentSelector counts as a Component), and
configurations for each of them.

class ContainerComponent implements Component, Initializable, Disposable {
ExcaliburComponentManager manager = new ExcaliburComponentManager();

public void initialize()
throws Exception

{
DefaultConfigurationBuilder builder = new

DefaultConfigurationBuilder();
Configuration sysConfig =

builder.buildFromFile("./conf/system.xconf");

this.manager.setLogger( Hierarchy.getDefaultHierarchy()
.getLoggerFor("document") );

this.manager.contextualize( new DefaultContext() );
this.manager.configure( sysConfig );
this.manager.initialize();

}

public void dispose()
{

this.manager.dispose();
}

}

Isn't this amazing? We have more than twice the number Components initialized and ready
for use with less than half the code (six lines of code instead of thirteen lines of code). There
is the drawback of the Configuration file looking somewhat crazy, but it minimizes the
amount of code you have to write.

There is a lot of activity happening under the hood of the ExcaliburComponentManager. For
each "component" element in the configuration file, Excalibur creates a ComponentHandler
for each class entry and maps it to the role entry. The "component" element and all it's child

Implementing the Dream

39



elements are used for the Configuration of the Component. When the Component is an
ExcaliburComponentSelector, the Excalibur reads each "component-instance" element and
performs the same type of operation as before-this time mapping to the hint entry.

Making the Configuration Pretty
We can manage the configuration file's appearance with the use of aliases. Excalibur uses a
RoleManager to provide aliases for the configuration system. A RoleManager can either be a
dedicated class that you create, or you can use the DefaultRoleManager and pass in a
Configuration object. If I use the DefaultRoleManager, I will hide the role configuration file
inside the jar with the rest of the system. This is because the role configuration file is only
going to be altered by developers. Below is the interface for the RoleManager:

interface RoleManager
{

String getRoleForName( String shorthandName );
String getDefaultClassNameForRole( String role );
String getDefaultClassNameForHint( String hint, String shorthand );

}

Let's take a look at how Excalibur uses the RoleManager in our scheme. First, Excalibur will
cycle through all the elements that are direct children of the root element. This includes all
"component" elements like before, but this time when Excalibur doesn't recognize an element
name, it asks the RoleManager which role we should use for this Component. If the
RoleManager returns null, the element and all it's child elements are ignored. Next, Excalibur
derives the class name from the role name. The last method is to dynamically map a class
name to a ComponentSelector's child type.

Excalibur provides a default implementation of the RoleManager that is configured with an
XML configuration file. The markup is very simple, and it hides all the extra information you
don't want your administrator to see.

<role-list>
<role

name="org.apache.avalon.excalibur.datasource.DataSourceComponentSelector"
shorthand="datasources"

default-class="org.apache.avalon.excalibur.component.ExcaliburComponentSelector">
<hint shorthand="jdbc"

class="org.apache.avalon.excalibur.datasource.JdbcDataSourceComponent"/>
<hint shorthand="j2ee"

class="org.apache.avalon.excalibur.datasource.J2eeDataSourceComponent"/>
</role>
<role
name="org.apache.bizserver.docs.DocumentRepository"
shorthand="repository"
default-class="org.apache.bizserver.docs.DatabaseDocumentRepository"/>

<role

Developing With Apache Avalon

40



name="org.apache.bizserver.docs.GuardianComponent"
shorthand="guardian"
default-class="org.apache.bizserver.docs.DocumentGuardianComponent"/>

</role-list>

In order to use the RoleManager, you do need to alter the "initialize" method of our
Container class. You are using the configuration builder to build a Configuration tree from
this file. Please remember, if you are going to use a RoleManager, you must call the
"setRoleManager" method before the "configure" method. To demonstrate how you would
retrieve this XML file from the class loader, I will demonstrate the technique below:

DefaultConfigurationBuilder builder = new DefaultConfigurationBuilder();
Configuration sysConfig = builder.buildFromFile("./conf/system.xconf");
Configuration roleConfig = builder.build(

this.getClass().getClassLoader()
.getResourceAsStream("/org/apache/bizserver/docs/document.roles"));

DefaultRoleManager roles = new DefaultRoleManager();
roles.enableLogging(Hierarchy.getDefaultHierarchy().getLoggerFor("document.roles"));
roles.configure(roleConfig);

this.manager.setLogger( Hierarchy.getDefaultHierarchy()
.getLoggerFor("document") );

this.manager.contextualize( new DefaultContext() );
this.manager.setRoleManager( roles );
this.manager.configure( sysConfig );
this.manager.initialize();

Since we added six more lines of code, we need to see what it bought us. Our final
configuration file can be written like this:

<my-system>
<datasources>

<jdbc name="documents">
<pool-controller min="5" max="10"/>
<auto-commit>false</auto-commit>
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql:localhost/mydb</dburl>
<user>test</user>
<password>test</password>

</jdbc>
<jdbc name="security">

<pool-controller min="5" max="10"/>
<auto-commit>false</auto-commit>
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql:localhost/myotherdb</dburl>
<user>test</user>
<password>test</password>

</jdbc>
</datasources>

Implementing the Dream

41



<repository>
<dbpool>documents</dbpool>

</repository>
<guardian>

<dbpool>security</dbpool>
<policy file="/home/system/document.policy"/>

</guardian>
</my-system>

As you can see, this is much more readable than how we started. Now we can add any
number of components to our system, and we won't have to write any more code to support
them.

Using the Component
Now that we have created our Components, we will want to use them. You access
Components the same way regardless of how they were instantiated or managed. You must
implement the Composable interface to get a reference to the ComponentManager. The
ComponentManager holds all the references to the Components you need. For the sake of our
discussion, we will assume that the ComponentManager given to us is configured in the same
manner as the final Configuration file in the last section. This means that we have a
Repository, a Guardian, and two DataSources.

Rules for Using the Component Management Infrastructure
The Component management infrastructure requires that you release any Component for
which you have obtained a reference. The reason for this restriction is so that the
Component's resources can be properly managed. A ComponentManager is designed for
cases when you have multiple types of Components with distinct roles. A
ComponentSelector is designed for cases when you have multiple types of Components with
the same role. Another unique aspect of the ComponentSelector is that it is a Component by
design. This enables us to get a ComponentSelector from a ComponentManager.

There are two valid approaches for handling references to external Components. You can
obtain your references during initialization, and release them during disposal. You may also
encapsulate the Component handling in a try/catch/finally block. Each has its advantages and
disadvantages.

Initialization and Disposal Approach

class MyClass implements Component, Composable, Disposable
{

ComponentManager manager;
Guardian myGuard;

/**

Developing With Apache Avalon

42



* Obtain a reference to a guard and keep the reference to
* the ComponentManager.
*/
public void compose(ComponentManager manager)

throws ComponentException
{

if (this.manager == null)
{

this.manager = manager;
myGuard = (Guardian) this.manager.lookup(Guardian.ROLE);

}
}

/**
* This is the method that uses the Guardian.
*/
public void myMethod()

throws SecurityException
{

this.myGuard.checkPermission(new BasicPermission("test"));
}

/**
* Get rid of our references
*/
public void dispose()
{

this.manager.release(this.myGuard);
this.myGuard = null;
this.manager = null;

}
}

As you can see by the sample code, this is easy to follow. The object gets a reference to a
Guardian Component when it first receives the ComponentManager. If you could be
guaranteed that the Guardian Component was ThreadSafe, then this is all that is necessary.
Unfortunately, you cannot guarantee this for the long term. To properly manage resources,
we must release the Component when we are done with it. That's why we kept a reference to
the ComponentManager.

The main disadvantage of this approach comes into play when you are dealing with pooled
Components. The reference of the Component is kept for the life of this object. It might not
be a problem if the object had a short life span, but if it was a Component managed by the
Excalibur component management architecture, its life span is as long as the Component
whose reference it has. What this means is that we are essentially turning the Component's
pool into a Factory.

The main advantage of this approach is that the code is very clear on how a Component is
obtained and released. You don't have to have any understanding of exception handling.

One other nuance is that you are tying the existence of the Guardian to the ability to initialize
this object. Once an Exception is thrown during the initialization phase of an object, you

Implementing the Dream

43



must assume that the object is not valid. Sometimes you want to fail if a required Component
does not exist so this is not a problem. You do need to be aware of this implication when you
are designing your Components though.

Exception Handling Approach

class MyClass implements Composable, Disposable
{

ComponentManager manager;

/**
* Obtain a reference to a guard and keep the reference to
* the ComponentManager.
*/
public void compose(ComponentManager manager)

throws ComponentException
{

if (this.manager == null)
{

this.manager = manager;
}

}

/**
* This is the method that gets the Guardian.
*/
public void myMethod()

throws SecurityException
{

Guardian myGuard = null;
try
{

myGuard = (Guardian) this.manager.lookup(Guardian.ROLE);
this.criticalSection(myGuard);

}
catch (ComponentException ce)
{

throw new SecurityException(ce.getMessage());
}
catch (SecurityException se)
{

throw se;
}
finally
{

if (myGuard != null)
{

this.manager.release(myGuard);
}

}
}

/**
* Perform critical part of code.

Developing With Apache Avalon

44



*/
public void criticalSection(Guardian myGuard)

throws SecurityException
{

myGuard.checkPermission(new BasicPermission("test"));
}

}

As you can see, the code is a bit more complex. In order to understand it, you have to
understand Exception handling. This is not necessarily a problem, because most Java
developers know how to handle them. You don't have to worry so much about the
Component life style with this approach, because we are releasing it as soon as we no longer
need it.

The main disadvantage of this approach is the added complexity of the exception handling
code. In order to minimize the complexity and make the code more maintainable, we
extracted the working code into another method. Keep in mind that we can get the reference
to as many Components as we possibly want inside the try block.

The main advantage of this approach is that you are managing your Component references
more efficiently. Again, there is no real difference if you are using ThreadSafe Components,
but it makes a real difference when you have pooled Components. There is a slight overhead
dealing with getting a new reference every time you use a Component, but the likelihood of
being forced to create a new instance of the Component is minimized.

Just like the Initialization and Disposal Approach, you have to understand a subtle nuance.
The Exception Handling Approach does not fail on initialization if the Component is missing
from the manager. As mentioned before, this is not entirely bad. Many times, you want an
object to exist, but it is not a failure if a desired Component is missing.

Getting Components from a ComponentSelector
For most operations, you will only need the ComponentManager. Since we decided that we
needed multiple instances of the DataSourceComponent, we need to know how to get the
instance we want. ComponentSelectors are a little trickier than ComponentManagers because
we are dealing with hints to get the reference we need. A Component has a specific Role, and
this contract is well documented. However, sometimes we need to select one of many
Components for a Role. A ComponentSelector uses an arbitrary object for the hint. Most of
the time, the object is a String, although you might want to use a Locale object to get a
proper internationalization Component.

In our system we have set up, we chose to use Strings to select the correct instance of the
DataSourceComponent. We even gave ourselves a Configuration element that references the
exact string we need to get the right Component. This is a good practice to follow, as it
makes it easier on administrators of a system. It is easier for an administrator to see a
reference to another Component than it is for them to remember magic values for the

Implementing the Dream

45



configuration.

Conceptually, getting a Component from a ComponentSelector is no different than getting a
Component from a ComponentManager. You just have one more step. Remember that a
ComponentSelector is a Component. The ComponentManager will be set up to return the
ComponentSelector when you lookup its role. You then need to select the component from
the selector. To demonstrate, I will extend the code from the Exception Handling Approach
discussed previously.

public void myMethod()
throws Exception

{
ComponentSelector dbSelector = null;
DataSourceComponent datasource = null;
try
{

dbSelector = (ComponentSelector)
this.manager.lookup(DataSourceComponent.ROLE + "Selector");

datasource = (DataSourceComponent)
dbSelector.select(this.useDb);

this.process(datasource.getConnection());
}
catch (Exception e)
{

throw e;
}
finally
{

if (datasource != null)
{

dbSelector.release(datasource);
}

if (dbSelector != null)
{

this.manager.release(dbSelector);
}

}
}

As you can see, we got the reference to the ComponentSelector using the Role specified for
the Component. We followed the Role naming guidelines outlined in a previous chapter by
adding the "Selector" suffix to the Role name. It is also perfectly acceptable to use a static
interface for all the Role names in your system to minimize the number of String
concatenation in your code.

Next, we obtained the reference to the DataSourceComponent from the ComponentSelector.
Our sample code assumed that we had already pulled the required information from the
Configuration object and placed it in a class variable named "useDb".

Developing With Apache Avalon

46



Excalibur's Utilities
This last section is included to give you an idea of the types of Components and utilities that
are included with Apache Avalon Excalibur. These utilities are robust, and fully usable in
production systems. We do have an unofficial staging project called "Scratchpad" where we
iron out implementation details for potential new utilities. Scratchpad utilities are of varying
quality, and their use is not guaranteed to remain the same—although you may have good
experience with them.

Command Line Interface (CLI)
The CLI utilities are used by a number of projects including Avalon Phoenix and Apache
Cocoon to process command line arguments. It provides facilities to print help responses, and
to process options by either a short name or a long name.

Collection Utilities
The collection utilities provide some enhancements to the Java™ Collections API. Among
them is the ability to find the intersections between two lists and a PriorityQueue that is
an enhancement to Stack to allow the priority of objects override the simple first in/last out
Stack implementation.

Component Management
We already discussed the use of this in the previous section. This is Excalibur's most
complex beast, but it provides a lot of functionality in just a few classes. It will make one
distinction more than simple SingleThreaded or ThreadSafe for managing a
component type: Poolable. If a Component implements Excalibur's Poolable interface
instead of the SingleThreaded interface, it will maintain a pool of Components and
reuse instances. Most of the time this works great. For those last remaining times where a
Component cannot be reused, use the SingleThreaded interface.

LogKit Management
The Avalon development team realized that many people wanted a simple mechanism to
build complex Logging target heirarchies. In the same spirit as the RoleManager the team
developed a LogKitManager that can be given to the Excalibur Component Management
system meantioned above. Based on the "logger" attribute it will give the proper Logger
object to the different Components.

Thread Utilities
The concurrent package contains several classes to assist in multithreaded programming:
Lock (a mutex implementation), DjikstraSemaphore, ConditionalEvent, and
ThreadBarrier.

Implementing the Dream

47



Datasources
This is modeled after the javax.sql.DataSource class, but simplified. There are two
implementations of the DataSourceComponent: one that pools JDBC connections
explicitly, and one that uses a J2EE application server's javax.sql.DataSource class.

Input/Output (IO) Utilities
The IO utilties provide a number of FileFilters and other File and IO specific utilities.

Pool Implementations
The Pool implementations provide a Pool for every occasion. You have an implementation
that is blazingly fast, but only usable in one thread—which should be ok for implementing a
FlyWeight pattern. You also have DefaultPool, which does not manage the number of
objects in its pool. SoftResourceManagingPool decommissions objects that exceed a
threshold when they are returned. Lastly, HardResourceManagingPool throws an
exception when you have reached the maximum number of objects. The last three pools are
all ThreadSafe.

Property Utilities
The property utilities are used in conjunction with Context objects. They give you the ability
to expand "variables" in your Resolvable object. It works like this: "${resource}"
will look for a Context value named "resource" and substitute its value for the symbol.

Developing With Apache Avalon

48



N405159) http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

Conclusion
Avalon has come of age, and it is ready for you. The
arguments presented in this section can help convince
you and others that using a mature framework is better
than creating your own.

Maybe you are already convinced, but need some help convincing your colleagues
that Avalon is right for you. Maybe you need some convincing yourself. Either way,
this chapter will help wrap everything up, and provide you with some convincing
arguments. We all need to fight Fear, Uncertainty, and Doubt (FUD) with the Open
Source model. For arguments on the validity of Open Source, I will direct you to Eric
S. Raymond's excellent treatises on the subject (see N405159 below) . Regardless of
your opinions on his politics, the papers he wrote and compiled into the book The
Cathedral and the Bazaar will give you the information you need to be convinced
about the open source model as a whole.

Avalon Works
The bottom line is that Avalon accomplishes the goal it was originally designed to
fulfill. Avalon does not introduce new concepts and ideas, but rather uses and
formalizes several concepts that have stood the test of time. The newest concept that
influenced the design of Avalon is the Separation of Concerns pattern introduced
sometime around 1995. Even then, Separation of Concerns is a formalization of

49



System Analysis techniques.

Avalon's user base is measured in the hundreds. Several projects like Apache Cocoon,
Apache JAMES, and Jesktop are all built on Avalon. Developers for those projects are users
of Avalon Framework. Because of the number of users Avalon has, it is very well tested.

Designed by the Best Minds
The authors of Avalon recognize that we are not the sole experts on server side
programming. We use concepts and ideas from other people's research. We respond to
feedback from our users. Avalon is not just designed by the five developers mentioned in the
introduction—the people who came up with the concepts of Inversion of Control, Separation
of Concerns, and Component Oriented Programming designed it.

The beauty of Open Source projects is that the result is an amalgamation of the best ideas and
the best code. Avalon has gone through periods of testing ideas and rejecting them because
there was a better solution. You can take the knowledge gained by the Avalon team and use it
in your own systems. You can take the predefined components in Excalibur and use them in
your own projects—they have been tested to work under heavy load without errors.

Compatible License
The Apache Software License (ASL) is compatible with just about every other license
known. The biggest known exceptions are the GNU Public License (GPL) and the Lesser
GNU Public License (LGPL). The important thing is that the ASL is friendly to corporate
development, and does not force you to release your source code if you don't want to. It is the
same license used for the Apache Software Foundation's venerable HTTP server.

Pooled Research
Most of Avalon's users contribute back to the project in some way. This spreads the cost of
developing, debugging, and documenting the framework across several users. It also means
that Avalon's code has gone through a more extensive peer review than would ever be
possible in one company. In addition, users of Avalon support Avalon. While it is true open
source projects do not typically have a help desk or telephone support line, we do have a
mailing list. Many times your questions can be answered in less time on the list than it would
take on some support lines.

Simplified Analysis and Design
Developing on Avalon helps the developer to get into a mindset. That mindset focuses the
efforts on how to discover Components and Services. Since many of the details regarding the
life of the Components and Services in the system are already analyzed and designed, the
developer only has to choose which ones they need.

It is important to state that Avalon development does not replace traditional Object Oriented

Developing With Apache Avalon

50



Analysis and Design, but enhances it. You are still using the same techniques you did before,
only now you have a tool set you can use to achieve your design faster.

Avalon is Ready
Avalon Framework, Avalon Excalibur, and Avalon LogKit are ready for you to use now.
They are mature and only getting better. While Avalon Phoenix and Avalon Cornerstone are
under heavy development, anything you write for them will be usable with only minor
modifications in the future.

Conclusion

51



Developing With Apache Avalon

52



Revision History

Revision 1.4 (28 Dec 2001)
• FIXED — Applied fixes reported by Patrick Hess

(patrick.hess@metazoa.de) (BL)

Revision 1.3 (30 Oct 2001)
• UPDATED — Added some clarifications to the best practices based on

discussions with Gerhard Froehlich (g-froehlich@gmx.de) (BL)
• UPDATED — Reformatted code examples so they are more readable. (BL)
• UPDATED — Applied fixes from Marcus Crafter

(crafterm@fztig938.bank.dresdner.net) and Ovidiu Predescu
(ovidiu@cup.hp.com). (BL)

Revision 1.2 (19 Oct 2001)
• ADDED — Added support for printing to PDF. Now everone can enjoy a

nicely printed document. (BL)
• REMOVED — Removed mention of Testlet as it is a dead project now. (BL)

Revision 1.1 (23 Jul 2001)
• FIXED — Fix bugs in the example code and config files, which I

encountered while trying to get it to compile. Submitted by:
jeff@socialchange.net.au (jeff) (PD)

• CHANGED — Applied documentation patches for incorrect code, spelling
mistakes, etc. (BL)

53



• CHANGED — Updated sample configuration file to reflect the new "driver"
configuration element. (BL)

• CHANGED — Corrected errors in sample code, as well as clarified thread safety
contracts. (BL)

Revision 1.0 (15 Jun 2001)
• ADDED —Initial Port from MS Word. (BL)

Developing With Apache Avalon

54



About the Authors

Mr. Berin Loritsch

Affiliations
• [ASF] Release Manager Apache Software Foundation/Apache Avalon
• [IPMS] Programmer/Analyst Information Planning & Management

Services, Inc.
• [TTG] Web Developer The Technologies Group, Inc.

Bio
Berin has helped define and document the Avalon projects since 2000. He has been
involved in Apache Avalon and Apache Cocoon. He is the author of the current
thread-safe pool implementations as well as the DataSourceComponent. Berin and
Giacomo Pati were the architects of Excalibur's Component Management
infrastructure.

Outside of the public view of the Apache Software Foundation, Berin has developed
workflow based web applications as well as data manipulation services. He has nine
years of experience developing database backed applications, and eight years
experience with technical writing. Berin has only been developing Java since 1999,
but his background in other Object Oriented Languages and architectures like C++
and CORBA helped him get a jump start.

55



Developing With Apache Avalon

56


